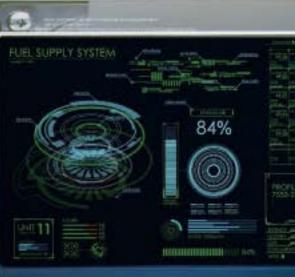


Serious


Human Connected Machines

DOING AN EMBEDDED "STEVE AUSTIN"

Re-Engineering your Embedded Platform for the next Decade

Embedded Online Conference May 22nd, 2018 Terry West, CEO & co-Founder, Serious Integrated, Inc.

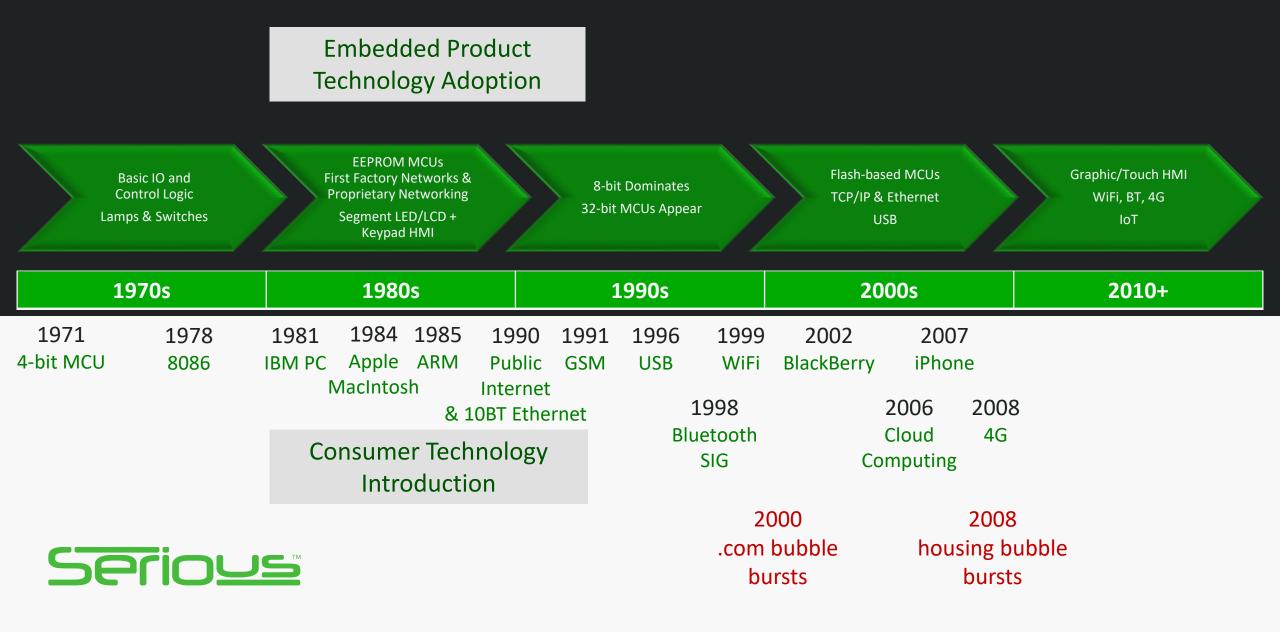
Evolved HMI + IoT Solutions

Session Overview

Intended Audience

Embedded Systems Design Engineers, Engineering Management, Supply Chain

Objective


 Explore new ways of "re-engineering engineering" of embedded products using platform solutions

Agenda

- Navigating marketing requirements
- Building blocks of a modern embedded system
- Starting points: levels of integration
- Watching out for "free" and unaligned solutions

Embedded Products are Evolving Quickly

When Irresistible Forces hit Immovable Objects

Consumer obvious requirements win over embedded traditions

- Marketing/business teams don't care about embedded engineering constraints
- What do you mean you can't do X ???
- The big "Xs"
 - Graphic/Touch HMI
 - Connectivity (BT, WiFi, Ethernet, 4G)
 - IoT roadmap with desktop, tablet and mobile access
 - Easy over-the-air/wire/local updates

Oh, of course, without increasing cost across the product line

Modern Embedded

BASELINE SOFTWARE

- Super loops fading fast to OSs
 - Modern lightweight & capable embedded (RT)OSs
 - Big-Iron Linux/Windows wedged into embedded

Advanced HMI

- Graphic/Touch LCDs dominate new products
- Graphic libraries fade; GUI tools are baseline
- Qt having some success in embedded, but leaner solutions more prevalent

Off-the-shelf stacks

- TCP/IP w/TLS, Web Servers, FTP, etc.
- File Systems (FAT, Embedded, exFAT)
- USB Host & Device
- Constant updates in the field
- Still many hard problems:
 - Non-big-iron comms drivers can be tricky
 - Software "infrastructure" stuck in the 80s
 - Security and vulnerability an increasing problem
 - Cross-MCU/MPU portability and scalability

Platform Anatomy

BASELINE HARDWARE

- Powerful but cheap computing & storage
 - 32-bit MCU(s)
 - On-chip RAM, Flash, Clocks, SPI, SD/e.MMC, GPIO, Timers, Video, I2C, I2S, Interrupts, PWM, DMA, USB, ADC/DAC, Crypto, LCD controller,....
 - DRAM.. 8MB < \$2</p>
 - NOR/NAND Flash... 128MB < \$2, \$4GB < \$6</p>
- Advanced HMI
 - Graphic/Touch LCD
 - Audio & Video playback support
- Multiple comms..
 - WiFi, BT5 Thread/Mesh, 4G, Ethernet, RS485...
- Distributed Processing
 - Multiple localized MCUs for purpose-driven application development

The Real Problem

SOFTWARE

- #1 cost of product development, product sustaining, and product evolution
- 100x 100,000x more lines of code
- Linux is 20MM lines of code and growing
 Now with "dynamically built distributions"
- Licensing continues to get more complex and treacherous to IP holders
- Complexity of new "simple consumer features" much higher than ever

Baseline Complexity

HARDWARE

- MPUs beyond usable by mere mortals?
 - data sheets >10,000 pages
 - high density BGAs
 - hulti-power supply sequencing, thermal management
 - high density PCB technologies
- Swiss Army Knives MCUs
 - creating incredible software challenges
- Bifurcation of Power/Sensor/IO hardware and computing hardware
 - distributed computing helps.. but creates even more software challenges

The Push to "Platforms"

- Q: What is a "platform"?
- A: Depends who's selling you!

The real answer:

the most you can buy off-the-shelf
 with the least total effort and cost
 to develop, deploy, maintain, and evolve
 your differentiated product lines

Old School

Chips + Reference Designs <u>+ Free & Ecosystem Software</u> = an unsustainable nightmare

Nouveau Silicon Chips w/pre-ported/licensed OS & frameworks <u>+ Reference Designs or MCU-modules</u> = flexible, powerful, but be careful

The Future?

Complete HW+SW app-ready scalable platforms
 SW abstraction for price/performance scalabilty
 Mix-and-match off-the-shelf HMI + Comms + Control

Best-in-Class Nouveau Silicon Platform

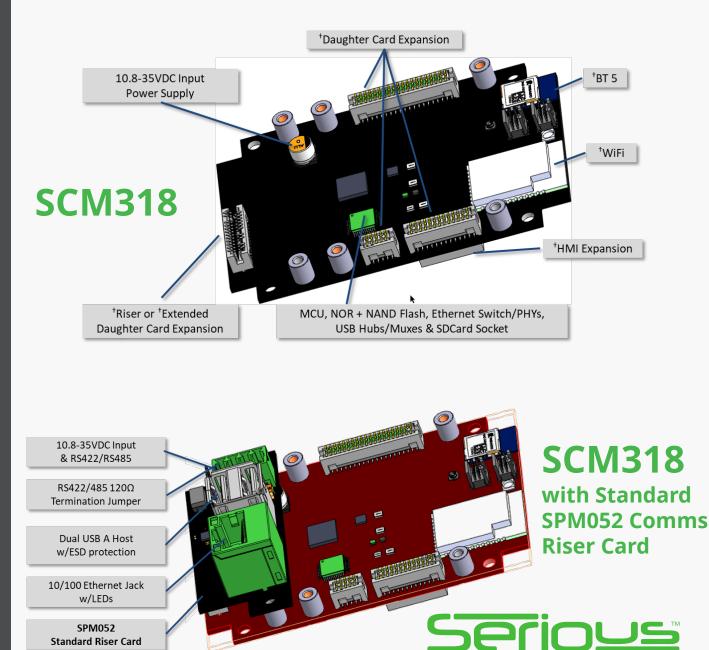
SCM318 Family Preview

Powerful off-the-shelf embedded HW-SW platform for communications and system control applications

Renesas 400MHz RZ/A1LC ARM Cortex A9 MCU w/2MB RAM
 *WiFi, *BT5, *Dual Ethernet, USB Host/Device, RS422/485, ...

 Complete licensed/ported/supported Segger + Serious

> OS, Drivers, Stacks, frameworks all ready-to-use


> TCP/IP, MQTT, CoAP, Crypto, USB, File System and more

Highly expandable with custom daughter cards and *HMI connectivity

- > Direct dock to Serious Generation 5 *HMI modules
- > 50+ MCU GPIOs accessible w/many peripherals (I2C, SPI, UARTs, CAN, ADC, etc.)

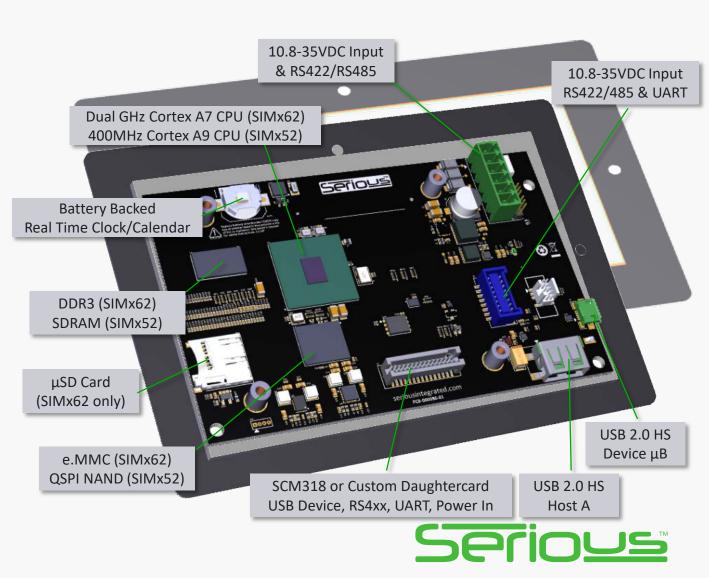
Robust power and environmentals

> 10.8-35VDC input, -40 to +85C operation, *PoE/PoE+ option

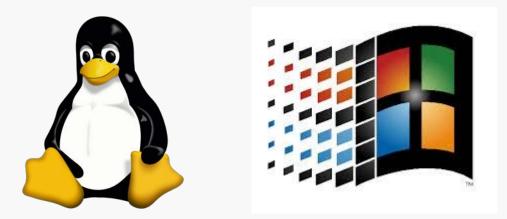
SIMx52/x62 HMI Modules Preview

Scalable off-the-shelf HMI HW+SW platform

- > 3.5" to 10.1" integrated LCDs plus HDMI-only 720p option
- Cap touch, resistive, no-touch, sunlight readable LCDs
- RS485, UART, and USB device connectivity to external systems
- > USBH thumb drive port for upgrades, file transfer
- I2S interface for audio output
- Connect via USB Micro B, 16-pin wire harness, or 30 pin header
- > 10.8-35VDC powered, up to -40 to 85C operation (LCD limited)


• SIMx62: Performance & Video Playback

- Renesas Dual GHz ARM Cortex A9 CPU
- 4GB e.MMC, 128MB DDR3, Micro SDCard


• SIMx52: Cost Effective Modern HMI

- Renesas 400MHz ARM Cortex A7 CPU
- 128MB SPI NAND, 16MB+ SDRAM

SIMx62/x52

Big Iron can be Great

 "Instant" adoption of consumer technologies

- Highly flexible software
- Powerful connectivity outof-the-box

Focus & Support

Embedded is not their target usage model

Should you pay for distributions & support?

Cost

Big Iron Software == Big Iron Hardware
 Don't underestimate the software team needed to support the distribution

Key Questions

What about your low end products?
Legal quagmires and unintended consequences
What is your strategy to stay secure?

The "Free" Trap

- Free is never free always more work than you ever expected with less support
- Replace the word "free" with as is & unsupported
- Many side effects of "free"

Support

 Your usage model is rarely consistent with the intended usage of the "free" code

Community support unreliable

Often no roadmap/bugfixes available

Disjointed

Initial and ongoing cost of aggregating code from many different sources?

Side Effects

- Locked into an MCU family that cannot scale?
 - Unexpected HW cost? Unscalable?
- Legal quagmires and unintended consequences
- Are you embarking on a "base distribution" nightmare?

Can you rebuild it? Better, Stronger, Faster?

PlatformsCan I leverage commercially supported, scalable,
sustainable platforms so I can focus on my product?

Partners Are my platform partner(s) able to help me get this done and stay out of the traps now and in the future?

Serious Human Connected Machines

FUEL SUPPLY SYST

84%

6565

843748

Need More? Blog, Podcasts, Resources, and Help.... seriousintegrated.com